下面我们举一个例子来看本书是怎样帮助学生们能够达到上述要求的。这个例子是本书留给读者的一个习题,希望读者自己证明关于并集和交集的性质的定理(即定理3.12)。下面这一段抄录于本书第20页。
这是一个填空题,要求学生做到:只利用原书讲过的概念和符号,在符合原书所有的规定下把这些空白填满,证明集合论中的一个定理。
这样说来,原来书名中的救生员(lifesaver)宁可解释成一个游泳教练,他的任务是带出一批优秀的运动员,到各种比赛中去大显身手。于是,他就把(例如)自由泳的动作分成用脚踏水、用手划水、侧身换气等各个部分,分别列出其要领和标准,让学生们一个一个认真去做,不准偷懒,不准马虎。只有学生们能熟练准确地做到这一切,才有可能成为优秀的游泳运动员。人们时常谈论游泳的天赋,只有达到这个地步,天赋才可能表现出来,并且得到进一步的培养。而要达到这个地步,必须假以时日。
这虽然是在讲游泳,学好实分析这门课程也必须这样做。正因为如此,本书强调慢慢来:慢慢读,慢慢写,并仔细思考。这也是本书对于基础课教学的主张。近年来似乎有一种论调,认为基本功不再重要了,把强调基础与强调创新对立起来。
本书中译本书名强调了这是普林斯顿的教材,普林斯顿大学是一所世界一流的大学,凡是在这里念过书的人都知道,它是非常重视教学的。知名的《范氏大代数》的作者“范”(Henry B. Fine)对建立普林斯顿大学数学系做出了重要的贡献。在他的参与努力下,普林斯顿大学发展了高质量教学的传统,成为世界著名的数学学术中心。所以,我认为“慢慢来:慢慢读,慢慢写,并仔细思考”正是体现了这个优秀传统,值得我们认真吸收。这里的填充题式的教学方法,不只是一种技术,也值得我们学习借鉴。
上面是从学生角度来看问题,现在转到教师角度来看一下本书又能给我们什么启发。这里需要从数学在我国的发展历史谈起。上面说了刘徽的局限性,那么,中国从什么时候开始才有了本书这样的分析数学呢?我不敢乱猜,但是如果说在五四运动以后,才在当时少数高水平的高等学校里开始认真地教数学系学生学,大概差不多。我是解放前几个月才到武汉大学数学系念书的,到1950 年“学习苏联”时,采用斯米尔诺夫的《高等数学教程》为教材(这是一套很好的教材),其中的数学分析部分是达到这个水平的,但是有许多数学教师感到比较难以接受。原因在于,他们习惯了当时非数学专业的初等微积分或高等数学水平的教学,让他们一下子转到以为标志的实分析,当然不是一件容易的事。
再往下看,如果从教学的角度来看这本书,就会发现本书是相当困难的。如果说对于学生,我们还只需要他们做到“慢慢来:慢慢读,慢慢写,并仔细思考”,那么对于教师,则有两个方面的要求:一是从教学内容来看,二是从教学方法来看。从教学内容来看,除了要求他们掌握语言之外,还需要他们掌握许多复杂的技巧;从教学方法来看,也有一些教师们以前没有遇到过的新问题。
本书以下的内容都是这种情况。我们不妨以第11、12章为例说明这一点,这两章是以紧集为中心议题的。第11章从紧集的定义开始,先给出集合的覆盖的概念,然后定义紧集就是其每一个开覆盖均有有限子覆盖的集合,接着指出有界闭集合必定是紧集,而开集一定不是紧集。这样,在讨论了紧集与闭集、开集的关系,紧集与有界性的关系等问题以后,得出了紧集就是有界闭集。这个基本结果称为海涅–博雷尔定理,而且由它可以得出我们通常说的波尔查诺–魏尔斯特拉斯定理(即关于极限点存在的基本定理)。
紧集必有区间套性质,这就是本书的定理 12.1。值得注意的是,我们可以在高维的空间中来证明它。一维闭区间在中的类似物本书称为格子,其实就是闭的维长方体。重要的是它也是一个紧集,因此前面所讲的关于紧集的一切结果都是成立的。这件事虽然直观地看来很简单,真要严格地给以证明却非易事。许多教材上都是直接宣布它们成立就完事了。所以我们这里也不来证明,而是一言以蔽之,说“紧集的乘积仍是紧集”。倒是有一件事我们想提一下,就是问如果,极限情况应该如何?但是什么是极限情况应该说明。粗略地说,我们会有著名的吉洪诺夫定理,指出紧集的无穷维乘积仍是紧集。这个结果在数学中意义重大,限于篇幅我们不能多说了。
我们当然希望有一个更加系统清晰的陈述方式。为此我们首先来介绍如何把一个数学定义改写成定理的形式。为了方便理解,我们来举一个例子。正三角形就是三个角相等的三角形,或者是三边长度相等的三角形。我们用(下标表示角)表示命题
我们最多还可以再加一句话:“这个三角形就称为正三角形”,不过这句话并不是上述数学命题的一部分。
这样一来,海涅–博雷尔定理就可以写成书中的形式。
定理 12.6(海涅–博雷尔定理)的子集是紧集当且仅当它既是闭集又是有界集。
请读者注意,定理的陈述中有当且仅当的字样,它就是,也就是命题的等价关系。根据紧集的定义,这个命题可以重述如下。
定理 12.6'(海涅–博雷尔定理)的子集具有有限覆盖当且仅当它既是闭集又是有界集。
海涅–博雷尔定理是实分析的中心结果之一,特别是关于紧集理论的中心结果。在这个意义下,本书作者觉得他所需的工具尽在于此了。就这一点而言,他已经完成他的工作了,不需要再往下写,这本书作为这门学科的救生员起到了一种指导的作用。
写到这里,读者可以体会到本书并不是一本容易读的书。我们见到的实分析的书写得如此深入的并不多见,但是我们还面临着教学方法上的困难。从本书的引言可以看到,本书只供实分析一个学期之所需。一学期大概就是十几个星期,就算一星期上6学时的课也就八九十个学时,又是这么深的内容,老师该怎么教呢?
就此我们转而讨论教学方法的问题。经过这些年的改革和开放的过程,我们多少知道了在普林斯顿大学这样的第一流学府中是怎样教书的。一个好的数学教师首先必须是一个好的数学家,这样,他才能够深知他所教的东西的实质。进一步,他又能以清楚明晰的语言表述出许多难以理解的内容。由此,他才能做到深入浅出,特别是把自己的心得教给学生。他能够言简意赅、引人入胜地把学生们带到科学的高严门墙前,使得学生们(当然不会有很多这样的学生)登堂入室之念油然而起,使他们走上正路。这里的要点是教和学两方面的交流,乃至交融。所谓教师人格的力量也许尽在于此。
这不是说国内没有这样的教师。从我们每个人的经历来看,我们无不受到过一些好教师的影响,才能有我们的今天和明天。只是说我们希望能发扬老师们的优秀品质,从质与量两个方面满足我们学生的要求。另一方面,又有许多毛病需要认真指出。一个常见的毛病是讲授唯恐不细,希望面面俱到而又必然挂一漏万。教师出于好心,希望所有学生、至少是大多数学生能够有好成绩,对于自己认为是重要的、最有心得的内容反反复复地讲解,而学生则可能漠然对之,了无意兴。在我看来,目前教学方法上存在的主要问题就是没有把教与学两方面的积极性结合起来。
齐民友
2020 年 7 月 7 日
《普林斯顿数学分析读本》
作者:[美]拉菲·格林贝格(Raffi Grinberg)
译者:李馨
《陶哲轩实分析》
什么是分析
本书将介绍高等实分析,这是关于实数、实数序列、实数级数以及实值函数的分析。虽然实分析与复分析、调和分析以及泛函分析是相关的,但与它们又是不同的。复分析是关于复数和复函数的分析;调和分析是关于调和函数(振动)的分析,比如正弦振动,并研究这些函数如何通过傅里叶变换构造其他函数;泛函分析研究的内容主要集中在函数上(以及这些函数如何构造出如向量空间这样的东西)。分析学是对这些对象进行严格研究的学科,并且着力于对这些对象做出准确的定性和定量分析。实分析是微积分学的理论基础,而微积分是我们在处理函数时所用到的计算规则的集合。
在本书中,我们将对很多概念进行研究,而这些概念在学习初等微积分时会学到,比如:数、序列、级数、极限、函数、定积分、导数等。虽然你曾经基于这些概念进行过大量的运算,但是现在我们主要研究这些概念的基本理论。我们关心如下几个问题。
(1)什么是实数?是否存在最大的实数?“0”之后的“下一个”实数是多少?(即:最小的正实数是几?)是否能够对一个实数进行无限次分割?为什么有些数(比如 2)有平方根,而有些数(比如-2)没有平方根?如果有无穷多个实数和无穷多个有理数,那么为什么会说实数比有理数的个数“多”?
(2)如何确定实数序列的极限值?什么样的序列存在极限,什么样的序列不存在极限?如果你能够阻止一个序列趋向无穷,这是否意味着该序列最终会停止变化并且收敛?把无穷多个实数相加后得到一个有限实数的情况是否存在?把无穷多个有理数相加后得到一个非有理数的情况是否存在?如果有无穷多个数相加,那么改变这些数的排列次序,所得到的和是否保持不变?
(3)什么是函数?函数是连续的、可微的、可积的、有界的分别是什么意思?能否将无限多个函数相加?对函数序列取极限会怎样?能否对无穷函数级数求微分?什么是求积分?如果一个函数 f(X) 满足:当 x=0 时,f(X) 的值为3 ;当 x=1 时,f(X) 的值为 5(即f(0)=3 且f(1)=5),那么 x 若取遍 0 到 1 之间的所有值,f(X)是否也取遍了3 到 5 之间的所有值? 为什么?
如果你上过微积分课程,也许能够回答出上述问题中的几个。但是对于微积分这类课程来说,上述这类问题并不是最重要的。这类课程的重点在于教会学生如何计算,比如计算函数从x=0 到x=1上的积分。既然现在你对这些概念已经非常熟悉了,而且知道如何进行运算,那么我们将回归到理论知识并且尝试真正去理解这些内容是如何展开的。
《陶哲轩实分析(第3版)》
作者:[澳]陶哲轩(Terence Tao)
译者:李馨
本书源自华裔天才数学家、菲尔兹奖得主陶哲轩在加州大学洛杉矶分校教授实分析课程的讲义。
全书从分析的源头——数系的结构和集合论开始,然后引向分析基础,再进入幂级数、多元微分学和傅里叶分析,最后介绍勒贝格积分,几乎完全是以具体的实直线和欧几里得空间为背景,完美结合了严格性和直观性。
02
《陶哲轩教你学数学》
作者:陶哲轩
译者:李馨
菲尔兹奖得主陶哲轩数学思维大解析,通过奥数竞赛习题解答,带你领悟数学之美。
本书是国际知名数学家陶哲轩15岁时的著作,从青少年的角度分析数学问题,主要是数学竞赛等智力谜题,用学生的语言解释思考过程,完整展现了少年陶哲轩的解题思路。返回搜狐,查看更多